Code: EC3T1

II B. Tech - I Semester - Regular Examinations - December 2014

ENGINEERING MATHEMATICS - III (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1. a) Find the cube root of 41 by using Newton-Raphson method. 7 M
 - b) Using Regula-Falsi method find a real root of $e^x \sin x = 1$.

 7 M
- 2. a) From the following data, calculate g(0.25) using Newton's forward interpolation.7 M

X	0.1	0.2	0.3	0.4	0.5
g(x)	9.9833	4.9696	3.2836	2.4339	1.9177

b) Use Lagrange formula to calculate f(3) from the following table:

x 0 1 2 4 5 6 f(x) 1 14 15 5 6 19 7 M

3. a) Find the first and second derivatives of the function tabulated below, at the point x = 1.1.

7 M

X	1.0	1.2	1.4	1.6	1.8	2.0
f(x)	0	0.128	0.544	1.296	2.432	4.00

- b) Use Trapezoidal rule to evaluate $\int_0^1 x^3 dx$ by considering five sub-intervals.
- 4. a) Perform two iterations of picard's method to find an approximate solution of the initial value problem
 y' = x + y²; y(0) = 1.
 7 M
 - b) Find the solution y(0.1) of the initial value problem $y' = -2ty^2$, y(0) = 1, with h = 0.1, using Runge-Kutta method of order four.
- 5. a) Show that the real and imaginary parts of the function w = logz satisfy the Cauchy-Riemann equations when z is not zero.
 - b) Construct an analytic function of the form $f(z) = u + iv, \text{where } v = \tan^{-1}\left(\frac{y}{x}\right), \ x \neq 0, y \neq 0.$ 7 M
- 6. a) Evaluate $\int_C \frac{\cos \pi z}{z^2 1} dz$, where C is around a rectangle with vertices $2 \pm i$, $-2 \pm i$.

- b) Find the Taylor's expansion of the function $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point z = i.
- 7. a) Find the sum of residues of $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle |z| = 2.
 - b) By integrating around a unit circle, evaluate $\int_0^{2\pi} \frac{\cos 3\theta}{5-4\cos \theta} d\theta.$ 7 M
- 8. a) Find the bilinear transformation which maps the points z = 1, i, -1 into the points $w = 0,1,\infty$. 7 M
 - b) Show that the bilinear transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into the line 4u + 3 = 0. 7 M